Лекция 15. Типовые архитектуры smart‑систем и чек‑листы готовности к эксплуатации
Цель лекции: систематизировать типовые архитектуры (edge/on‑prem/cloud) для smart‑систем и цифровых двойников, и дать практические чек‑листы “готовности к эксплуатации” (production readiness): SLO/SLA, наблюдаемость, безопасность, отказоустойчивость, данные, CI/CD, инциденты.
1. Типовые архитектуры: базовые шаблоны
В инженерной практике удобно мыслить “архитектурными шаблонами”, которые комбинируются.

Шаблон A: Edge‑only (автономный)
• локальная обработка, локальные правила, локальное хранение
• синхронизация в облако при наличии связи
• подходит для плохой сети и низкой задержки

Шаблон B: Edge + Cloud (гибрид)
• edge: ingest, фильтрация, буфер, быстрые правила
• cloud: хранение, обучение моделей, отчёты, интеграции

Шаблон C: On‑prem (периметр предприятия)
• брокер/БД/аналитика в дата‑центре предприятия
• интеграция со SCADA/MES/ERP внутри периметра
• используется, когда данные нельзя выносить наружу

Шаблон D: Multi‑tenant Cloud (SaaS)
• централизованный backend для многих площадок/клиентов
• строгая изоляция tenant, IAM, лимиты

Шаблон E: Digital Twin backend (events + state + time‑series)
• модели активов + состояние двойника + история
• событийная шина, CQRS‑API, интеграции
2. Типовая архитектура smart‑платформы (слоями)
Удобная “слойная” схема:
1) Device/PLC layer: датчики, контроллеры, SCADA
2) Edge gateway: протоколы, фильтрация, буфер, локальные правила
3) Messaging/Event bus: MQTT/Kafka/AMQP
4) Ingest & Stream processing: нормализация, маршрутизация, агрегаты
5) Storage: time‑series + relational + object storage
6) Twin/Domain services: состояние, KPI, диагностика, прогнозы
7) API & Integration: REST/gRPC/WebSocket, коннекторы к SCADA/MES/ERP
8) Observability & SecOps: метрики, логи, трассировки, IAM, аудит
9) CI/CD & Ops: деплой, rollback, инциденты, SLO

Ключевая идея: отделять поток данных (stream) от бизнес‑логики и интерфейсов.
3. Чек‑лист готовности к эксплуатации (Production Readiness Checklist)
Чек‑лист — это минимальный набор вопросов, которые закрывают риски перед запуском в производство. Ниже приведён практический шаблон.
3.1 SLO/SLA и требования к качеству сервиса
• Определены SLO для ключевых путей: ingest latency, API latency, доступность, задержка обновления Twin State.
• Определены метрики ошибок: error rate, dropped messages, consumer lag.
• Есть бюджет ошибок (error budget) и правило “стоп релизы” при его исчерпании.
• Определён RTO/RPO для данных (восстановление и допустимые потери).
3.2 Наблюдаемость (Observability)
• Метрики: CPU/MEM/Disk/Net, ingest rate, queue depth, broker lag, DB write/read latency.
• Логи структурированы (JSON), есть уровни логирования и корреляционные идентификаторы.
• Трассировки: trace_id через edge → broker → ingest → storage → API.
• Дашборды и алерты настроены (SLO‑based), определены runbooks.
• Есть health endpoints и readiness/liveness probes (Kubernetes).
3.3 Надёжность и отказоустойчивость
• Брокер и БД имеют резервирование (replication), понятны режимы деградации.
• Есть backpressure/лимиты очередей и стратегии при переполнении (drop low‑priority / aggregate).
• Есть store‑and‑forward на edge, политика ретенции, дедупликация после офлайна.
• Проработаны сценарии: потеря брокера, потеря БД, потеря сети, перегрузка, “storm” событий.
• Проведены нагрузочные тесты и базовые chaos‑проверки (хотя бы на стенде).
3.4 Данные и качество (Data Quality)
• Определены схемы данных (contracts): версии, совместимость, обязательные поля.
• Есть валидация: диапазоны, единицы измерения, пропуски, выбросы, дубликаты.
• Реализованы quality flags (GOOD/BAD/UNCERTAIN) и причины отбраковки.
• Синхронизация времени (NTP/PTP), правила time alignment/late events.
• Ретенция и downsampling настроены; понятно, что хранится raw vs aggregated.
3.5 Безопасность (Security) и доступы
• IAM: роли (RBAC/ABAC), принцип наименьших прав, аудит действий.
• TLS везде, ротация сертификатов, секреты в Secret Manager (не в репозитории).
• Сегментация сети (zero trust), ACL для MQTT topics/streams.
• Команды/уставки защищены: approval, safety bounds, журналирование и traceability.
• Патч‑менеджмент и обновления подписаны (secure updates), защищённый загрузчик (по возможности).
3.6 CI/CD и управление релизами
• Есть pipeline: build → tests → security scan → deploy → smoke tests.
• Есть версия артефактов и инфраструктуры (IaC), воспроизводимые окружения.
• Есть canary/blue‑green, стратегия rollback и миграции БД.
• Есть feature flags для безопасного включения функционала.
3.7 Инциденты и эксплуатационные процедуры
• Есть on‑call/ответственные, правила эскалации, каналы связи.
• Runbooks: что делать при росте lag, падении брокера, деградации БД, потере связи edge.
• Регламент postmortem (RCA) и база знаний.
• Планы обслуживания: резервные копии, тест восстановления, ротация ключей и сертификатов.
4. Готовность Digital Twin: дополнительные пункты
Для цифрового двойника добавляются специфические проверки:
• корректность топологии активов (asset graph)
• согласованность Twin State с источником (SCADA) и допустимые расхождения
• версионирование моделей/калибровок, правила обновления и отката
• мониторинг дрейфа данных/модели, алерты на деградацию
• режимы: simulation / advisory / control + safety‑ограничения
5. “Архитектура на 1 странице” для отчёта
Рекомендуемый одностраничный шаблон:
• Цель и объект (что оптимизируем/контролируем)
• Источники данных и протоколы (OPC UA/Modbus/MQTT)
• Потоки данных (ingest → bus → processing → storage)
• Сервисы и API (Twin State, Telemetry, Commands)
• SLO/SLA и RTO/RPO
• Риски и стратегии деградации
• Безопасность и доступы
• Наблюдаемость и on‑call
• CI/CD, деплой, rollback
6. Итоги
• Типовые архитектуры позволяют быстро проектировать smart‑системы, комбинируя edge/on‑prem/cloud.
• Production readiness — способ закрыть ключевые риски перед запуском.
• Минимальный набор: SLO, наблюдаемость, безопасность, отказоустойчивость, данные, CI/CD, инциденты.
• Для Digital Twin обязательно: топология, модели, дрейф, безопасные режимы управления.
Самопроверка (12 вопросов)
• Чем отличается Edge‑only от Edge+Cloud архитектуры по рискам и преимуществам?
• Какие слои вы считаете обязательными для smart‑платформы и почему?
• Назовите 3 ключевых SLO для ingest‑контура.
• Какие метрики/алерты помогут обнаружить consumer lag в стриминге?
• Что такое backpressure и зачем нужен лимит очереди?
• Какие механизмы обеспечивают дедупликацию событий после офлайна?
• Почему quality flags важны для цифрового двойника?
• Какие меры обязательны для безопасной отправки команд в SCADA/PLC?
• Чем canary отличается от blue‑green?
• Что должно быть в runbook для падения брокера?
• Как проверять, что резервные копии реально восстанавливаются?
• Зачем нужны режимы simulation/advisory/control?
